
Boolean Rewriting Strikes Back:
Reconvergence-Driven Windowing Meets Resynthesis

Heinz Riener1, Siang-Yun Lee1, Alan Mishchenko2 and Giovanni De Micheli1
1EPFL, Switzerland and 2UC Berkeley, USA

ASP-DAC 2022, Session 5D-1



1

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

Boolean Rewriting Strikes Back:
Reconvergence-Driven Windowing Meets Resynthesis

• Boolean rewriting: classical logic optimization algorithm
• Two bottlenecks to go beyond 4-cuts:

- Cut enumeration
- Database of optimum circuits

• +3.2% better quality, 2.7x faster compared to ABC drw

à Reconvergence-driven windowing
à Heuristic resynthesis Window rewriting

[3] P. Bjesse and A. Borälv, “DAG-aware circuit compression for formal verification,” in ICCAD 2004.
[4] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG rewriting: A fresh look at combinational logic synthesis,” in DAC 2006. 



0. (Classical) Boolean Rewriting
Powerful classical algorithm, yet hard to go further

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Technology-Independent Optimization

• Abstract data structure 
modeling digital circuits 
(e.g. AIGs, XAGs)
• Early step in logic synthesis
• Focus on area minimization 

(#nodes)

3

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



1. Choose a pivot
2. Enumerate cuts
3. Simulate
4. Find a better sub-circuit
5. Replace the sub-circuit 
6. Choose another pivot 

(go back to 1.)

Cut-Based Rewriting: Idea

1. Choose a pivot
2. Enumerate cuts
3. Simulate
4. Find a better sub-circuit
5. Replace the sub-circuit 
6. Choose another pivot 

(go back to 1.)

4

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Cut-Based Rewriting: Bottlenecks

• Cut enumeration
#cuts ∝ exp(k) 🤯

5

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

k: cut size

à Hard to extend beyond 4-cuts 😵

• Database
#functions ∝ exp(exp(k)) 🤯



1. Reconvergence-Driven Windowing
One window to rule them all

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



One “Good” Window Instead of Many Cuts

• Single-rooted cuts à multi-output windows
• A “good” window captures reconvergences
• Reconvergence is key to optimization

7

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Input: pivot p, cut size k, distance l
Output: a window around p with ≤ k inputs 
and reconvergence within l steps
1. Identify reconvergence
2. Collect inputs
3. Expand towards TFI
4. Expand towards TFO
5. Identify outputs

Reconvergence-Driven Windowing

Input: pivot p, cut size k, distance l
Output: a window around p with ≤ k inputs 
and reconvergence within l steps
1. Identify reconvergence
2. Collect inputs
3. Expand towards TFI
4. Expand towards TFO
5. Identify outputs

8

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Quality of Windows

• Node containment: 98%
à Most nodes are considered at least once in a window

• 4-cut containment: 41%
à One 6-input window captures 41% of the pivot’s 4-cuts
(The other cuts may be contained in another window, so ≥ (⋙) 41% of the 4-
cuts are contained in at least one 6-input window)

9

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



2. Heuristic Boolean Resynthesis
Getting rid of the exact database

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



11

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

Resynthesize Node Functions On-the-fly

• Given a target function f and some divisor functions g1, …, gr, find a 
dependency function (circuit) h, such that f = h(g1, …, gr)
• Similar to resubstitution, but not limited to small dependency circuits
• Fast heuristic
• General, the functions’ input size is not limited



“Unate” Divisors

12

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Recursive Synthesis

13

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Quality of Resynthesis

14

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

#vars
Exact database Heuristic resynthesis

#gates Solved #gates

3
AIG 794 ANDs 254/256 890 ANDs
XAG 384 ANDs + 206 XORs 254/256 528 ANDs + 142 XORs

4
AIG 365276 ANDs 54622/65536 499308 ANDs
XAG 178536 ANDs + 98940 XORs 54622/65536 351592 ANDs + 60332 XORs

99%

84%

+0.35 gates/function

+2.05 gates/function



3. Window Rewriting
A new hope

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Windowing + Resynthesis

• Construct one window per pivot node
• Optimize the window by resynthesizing every node in it

16

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting



Comparison with 4-Cut Rewriting

ABC drw Window rewriting

First iteration Until convergence First iteration Until convergence

Size reduction 5.44% 5.61% 8.86% 9.16%

Runtime (s) 6.70 28.44 10.69 32.84

17

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

+3.2% better quality, 2.7x faster

Implementation available in mockturtle: https://github.com/lsils/mockturtle

https://github.com/lsils/mockturtle


Conclusions & Future Work

• One 6-input window instead of many 4-cuts
• Capture reconvergences

• Heuristic resynthesis instead of exact database look-up
• Local computation; potential for parallelization

• Resynthesis + other algorithms [15]

• Window rewriting + other resynthesis engines [14]

18

0. (Classical) Boolean Rewriting
1. Reconvergence-Driven Windowing

2. Heuristic Boolean Resynthesis
3. Window Rewriting

We rewrite much 
better than we aim!

[14] S.-Y. Lee, H. Riener, and G. D. Micheli, “Logic resynthesis of majority-based circuits by top-down decomposition,” in DDECS 2021.
[15] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli, “A simulation-guided paradigm for logic synthesis and verification,” 

TCAD 2021. 



Boolean Rewriting Strikes Back:
Reconvergence-Driven Windowing Meets Resynthesis

Heinz Riener1, Siang-Yun Lee1, Alan Mishchenko2 and Giovanni De Micheli1
1EPFL, Switzerland and 2UC Berkeley, USA

ASP-DAC 2022, Session 5D-1


